Хи-квадрат распределение - Definition. Was ist Хи-квадрат распределение
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Хи-квадрат распределение - definition

РАСПРЕДЕЛЕНИЕ СУММЫ КВАДРАТОВ НЕСКОЛЬКИХ НЕЗАВИСИМЫХ СТАНДАРТНЫХ НОРМАЛЬНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН
Хи-квадрат-распределение; Хи-квадрат; Хи-квадрат распределение

Хи-квадрат распределение         
("Хи-квадра́т" распределе́ние)

с f степенями свободы, распределение вероятностей суммы квадратов

χ2 = X12+...+Xf2,

независимых случайных величин X1,..., Xf, подчиняющихся нормальному распределению (См. Нормальное распределение) с нулевым математическим ожиданием и единичной дисперсией. Функция "Х.-к." р. выражается интегралом

,

Первые три Момента (математическое ожидание дисперсия и третий центральный момент) суммы χ2 равны соответственно f, 2f, 8f. Сумма двух независимых случайных величин χ12 и χ22, с f1 и f2 степенями свободы подчиняется "Х.-к." р. с f1 + f2 степенями свободы.

Примерами "Х.-к." р. могут служить распределения квадратов случайных величин, подчиняющихся Рэлея распределению (См. Рэлея распределение) и Максвелла распределению (См. Максвелла распределение). В терминах "Х.-к." р. с чётным числом степеней свободы выражается Пуассона распределение:

.

Если количество слагаемых f суммы χ2 неограниченно увеличивается, то согласно центральной предельной теореме (См. Предельные теоремы) распределение нормированного отношения сходится к стандартному нормальному распределению:

,

где

.

Следствием этого факта является другое предельное соотношение, удобное для вычисления Ff (x) при больших значениях f:

В математической статистике "Х.-к." р. используется для построения интервальных оценок и статистических критериев. Если Y1,..., Yn - случайные величины, представляющие собой результаты независимых измерений неизвестной постоянной а, причём ошибки измерений Yi - а независимы, распределены одинаково нормально и

Е (Yi - a) = 0, Е (Yi - а)2 = σ2,

то статистическая оценка неизвестной дисперсии σ2 выражается формулой

,

где

, .

Отношение S2/σ2 подчиняется "Х.-к." р. с f = n - 1 степенями свободы. Пусть x1 и x2 - положительные числа, являющиеся решениями уравнений Ff (x1) = α/2 и Ff (x2) = 1 - α/2 [α - заданное число из интервала (0, 1/2)]. В таком случае

Р {х1 < S2/σ2 < x2) = Р {S2/x2 < σ2 < S2/x1} = 1-α.

Интервал (S2/x1, S2/x2) называют доверительным интервалом для σ2, соответствующим коэффициенту доверия 1 - α. Такой способ построения интервальной оценки для σ2 часто применяется с целью проверки гипотезы, согласно которой σ2 = σ0202 - заданное число): если σ02 принадлежит указанному доверительному интервалу, то делается заключение, что результаты измерений не противоречат гипотезе σ2 = σ02. Если же

σ02S2/x2 или σ02S2/x1,

то нужно считать, что σ2 > σ02 или σ2 < σ02 соответственно. Такому критерию отвечает Значимости уровень, равный α.

Лит.: Крамер Г., Математические методы статистики, пер. с англ., 2 изд., М., 1975.

Л. Н. Большев.

Квадрат (конь)         
ЖЕРЕБЕЦ, ОРЛОВСКИЙ РЫСАК ГНЕДОЙ МАСТИ
Конь Квадрат
Квадра́т — жеребец, орловский рысак гнедой масти. Победитель приза «Барса» и Всесоюзного «Дерби» (завоевал два главных приза для четырёхлетних рысаков).
НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ         
  • Функция распределения нормального распределения
ПРЕДЕЛ РАСПРЕДЕЛЕНИЯ СУММИРУЕМЫХ СЛУЧАЙНЫХ ВЕЛИЧИН
Распределение Гаусса; Гауссово распределение; Стандартное нормальное распределение; Нормальная случайная величина; Гаусса распределение; Гауссовское распределение; Колоколообразное распределение; Гауссов шум; Гауссовый шум
(распределение Гаусса) , распределение вероятностей случайной величины Х, характеризуемой плотностью вероятности где a - математическое ожидание, ?2 - дисперсия случайной величины Х. Возникает нормальное распределение, когда данная случайная величина представляет собой сумму большого числа независимых случайных величин, каждая из которых играет в образовании всей суммы незначительную роль.

Wikipedia

Распределение хи-квадрат

Распределе́ние χ 2 {\displaystyle \chi ^{2}} (хи-квадра́т) с k {\displaystyle k} степеня́ми свобо́ды — распределение суммы квадратов k {\displaystyle k} независимых стандартных нормальных случайных величин.